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The linear steady thermoelastic problem for a strip with a
collinear array of Griffith cracks parallel to its edges
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Abstract. The problem of determining the thermal stresses when a uniform heat flow in a thermoelastic strip is
disturbed by a collinear array of cracks is discussed. The solution of the Duhamel-Neumann equations is posed in
terms of harmonic functions, which leads to dual series relations whose solutions are known. Numerical results for
the stress intensity factors at the crack tips are displayed in graphical form.

1. Introduction

The problem considered here is that of determining the stress intensity factors when a
collinear array of Griffith cracks disturb a uniform heat flow in an infinite, two-dimensional,
linear, isotropic, thermoelastic strip whose edges are traction free and held at different
temperatures. The strip which occupies the region - < X < x, -H < Y < H is assumed to
deform under plane strain conditions while the cracks, which are thermally insulated and
traction free, are assumed to form a periodic array defined by 0 < IX - 2NPI < B < P, N = 0,
+1, +2 .... The temperatures of the edges Y = -H and Y = H are denoted by T. and T2

respectively (Fig. 1). The problem of a uniform heat flow disturbed by an array of Griffith
cracks in an infinite plate has been solved in [1]. In [1] the authors were able to find the
stress intensity factors in terms of a simple quadrature. The problem presented in this paper
does not have such an agreeable solution but reduces to that given in [1] once the
appropriate specialization is made.
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Fig. 1. Array of Griffith cracks parallel to the edges of a linear thermoelastic strip.
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The notation used here is the same as that in [1]. Let To denote the reference temperature
K the thermal conductivity, a the coefficient of linear expansion, v Poisson's ratio, /U the
shear modulus and E the Young's modulus of the material.

To non-dimensionalise the problem, the following quantities are introduced:

P aE(T, - T2 )P
L = -- , p0 = 4rrH(1 '(1.1)

IT I 110 47rH(1-v)

which have dimension of length and stress respectively.
The temperature at the point (X, Y) is denoted by

T(X, Y)= T o 1+ (L' (1.2)

and as a matter of convenience we introduce the dimensionless variables

x = XIL, y = YIL, b = BIL, h = HIL, (1.3)

the dimensionless displacements

2A1 Ux(X, Y) 2pt Uy(X, Y)u(x, Y) = PL , v(x, y)= PL (1.4)

and the dimensionless stresses

sX(x, y) = xx(X, Y) yy(X, Y)
Po Po

(1.5)
xy(X, Y)

sy(x, y) = YPo

The solution to our problem is achieved via Sneddon's general solution [2] which, in the
notation used here, takes the form

u(x, y) = a + a + (2 )y a2 + anax ax ax y ax '

X ay a024 + Y ay

O(x, y) = - a y (1.6)ay '

s X(/~y)= - -3
2 1) a24 a 2 _ 1)y - - - -0a2 0

Sxx(x, Y) 2 2-( -l)Y Y 2 ay ay2 ay yy2 y 3 y

a'x 2~2 " a3 a2' a I
Syy(X, y)= (32 _ 1) (2 _ )y + 

ay 2 ay ay ay2 ay'

ax ahx y aaax ay +/ ~'ax ay2 + ax ay 
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where X(x, y), +(x, y) and qi(x, y) are arbitrary harmonic functions and

2= - v), 2 ,= 2 hT2 (1.7)
- 1-2v ' -T-T 2 '

It is readily shown [3] that, in the absence of the cracks, the undisturbed thermoelastic field
is given by

Oocxy)=[ TT + T + TIE T - T y= 2 T0 I [ T ] h

vO(X, y) = _y 2 , Sxx(x, y) = 2y, (1.8)

u0 (x, ) = Sxy(X, y) = sy(, ) = 0.

The presence of the cracks disturb (1.8) thereby yielding a new field

O(x, y) = 00(x, y) + O(x, y) ,

v(x, y) = v°(x, y) + vP(x, y) , (1.9)

u(x, y) = uP(x, y), sij(x, y) = sP(x, y),

where the perturbations, denoted by the superscript p, can be found by solving the following
mixed boundary value problem.

PROBLEM. Solve the dimensionless, plane strain equations of linear thermoelasticity in the
region 0 x < x < rr, 0 < y < h subject to the boundary conditions:

1. P(O, y = P( Y) = uP(, y ) = sp(7r Y) = O; ( < y < h)

2. sP(x, h) = sPy(x, h) = O; (O < x < )

3. sP (x, 0)=0; (O< x < r)

sxy(x, 0)=0; (O<x<b)

5. (0, y) = (r, y) = O (O < y < h)

6. P(X, h) = O; (O < x < rr)

7. O(x, )=0; (b<x< r)

OaP T 1 - T 2a (x, 0) = -2 (O < x < b)ay 2hTo

The solution to this problem is obtained by superimposing the solutions to the following two
mixed boundary value problems.

PROBLEM 1. Solve the dimensionless, plane strain equations of linear thermoelasticity in
the region < x < rr, < y < h subject to the boundary conditions:
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1. u(O, y) = u(7r, ) = sY(O, ) = sly(r, ) 0; (O < y < h)

2. sly(x, h) = syy(x, h) = O ;, (O < x < r)

3. u'(x, O) = syy(x, O) =O; (O < < r)

4. (0, y)= y)=; (O < y < h)ax ax

5. 0(x, h) =O; (O<x < T)

6. 0'(x, O)= 0; (b <x< Tr)

001 T 1 - 2a(x,0) = (O < x < b)

Calculate: s (x, O) = f(x) (0 < x < b)

PROBLEM 2. Solve the dimensionless, plane strain equations of isothermal elasticity in the
region 0 x < rx < , 0 < y < h subject to the boundary conditions:

1. U2(0 y) = U2(7Ty ~ , y) = -u(r,( y) 0; ( < y < h)

2. sXy(x, h) = syy(X, h) = 0; (O < x < ~r)

3. syy(x, 0) = 0; (O < < r)

4. u2 (x, 0)= 0; (b < x < 7r)

sxy(x, O) = -f(x). (O < x < b)

2. The solution of Problem 1

In Sneddon's general solution (1.6) the harmonic functions are chosen to be

(X, Y) = A 0
2 (Y ) A 2 (1 y ) + n-3 A cosh(ny) cos(nx)

2n- A r3 2 (nh coth(nh) -1) 21
+ n-3 D(nh) - -sinh (nh) sinh(ny) cos(nx); (2.1)

,-1 D(nh) L 2_

x(x', ~)A 0 (x 2 -y n-3 A cosh(ny) cos(nx)2 n=l

2n_3A
+ - [sinh2(nh) - (nh)2 ] sinh(ny) cos(nx) (2.2)

n= D(nh)

and

(X, ) 2[A + A(x 2 _ y2 ) -2An cosh(n(h - y))i'(x, y) -f[A 0 y 2h n- 3 A n cosh(nh) cos(nx) (2.3)
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where

D(6) = sinh (2e) - 2 . (2.4)

All conditions of Problem 1 will be satisfied provided the weights A0, A, A 2 ,... solve the
following dual trigonometric equations

G,(x)= Ao+ n An cos(nx)=O (b<x < rr),
n=1

(2.5)

F, (x)= ~ An coth(nh) cos(nx) = 1 (O < x < b).
n=l1

These dual equations are solved [4] by setting

1 fb

AO =- - tp(t) dt, (2.6)

A, =-- f p(t) sin(nt) dt (n 1), (2.7)

from which we find that

G,(x) = -H(b - x) f p(t)dt (O<x< r), (2.8)

where H(u) is the Heaviside step function. Furthermore, it can be shown that

2K Kt Kt Kt
1b - sn- cn- dn -

F(x) - p(t) + r dt, (2.9)
sn - -sn -

7r IT

where Z(5) is Jacobi's Zeta function and

K2 [ n= I 4], q=eh (2.10)

is the complete elliptic integral of the first kind while sn(6), cn(6), and dn( ) are Jacobian
elliptic functions.

Hence p(t) must solve the singular integral equation

2K Kt Kt Kt
-b sn -cn- dn-

o p() I I dt=B -1 (O<x<b) (2.11)
sn - - sn

rT IT

with subsidiary condition

p(O) = 0, (2.12)
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where

1 b 

B -1=--I p(t) +-Z dt. (2.13)

A suitable change of variables reduces (2.11) to the finite Hilbert transform [5], and hence
yields

Kt
(B1 - 1) sn -

(2.14)

2 Kb_ 2 Kt 

It follows at once that

01(X, 0) = T 1 - T 2 IT(B - 1)F(*/, k)

2hT Kb
K dn K 

(O < < b), (2.15)

where F is the incomplete elliptic integral of the first kind with parameters

(n2 Kb
A- K- " I

Kb ' .. '"
dn- 

Additionally, we obtain the flux

Additionally, we obtain the flux

7s 2 KX 1 /2- sn -

(2.16)
Kx

cn-
7T

dy (x, )= ) [H(x) ]
ay 2hT, A1(X)

where

(2 Kx 2 Kb 1sn -- sn -

(2.17)

(2.18)Kx
sn-

7r

Next, by virtue of (1.6) and (2.2) we observe that

f(x) = - nAn[1 - M(nh)] sin(nx),
n=l

where

1 - 2 + 2 2 - e- 2

D(e)

Therefore on making use of (2.7) and (2.8) it can be shown that

(2.19)

(2.20)

Y �lrll11

A i(X =



2hT o 1 b
f(x)= TT - '(x, O) K(t - x) dt

f - 2 7'.b

where

K(x) = cot( )- M(nh) sin(nx).

3. The solution of Problem 2

In Sneddon's general solution (1.6) we set

(X, y) = (2 - 1) -I i n-2Bcosh 2 sinh(nh) sinh(ny) cos(nx),
n=1 ID(nh) 
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(2.21)

(2.22)

(3.1)

X(x, y)= > n 2B[ cosh(ny)-
n=l

2(sinh2(nh) - (nh)2)

D(nh)
sinh(ny)] cos(nx)

and

q(x, y) = 0.

Then all conditions of Problem 2 will be satisfied if the weights B,, B2, B 3 ,... solve the
following dual trigonometric equations:

G,(x)= > n- B sin(nx)=0
n=l

F2 (x) = B[1 - M(nh)] sin(nx) = -f(x)
n=l

Let

B.~ 2 ftb q(t)= -o (b 2 t2~)1/2 cos(nt) dt (n ~ 1),

(b < x < r) ,

(3.4)

(O < x < b).

(3.5)

then

G2(x ) = H(b - x) Jo q(t) 2 dt(b 2 -)1/2dt (0< x < r),

provided

(b (t) dt

Additionally,

F2(x) =-7 - T1 ob q(t)F2(x) = - b 2 -]7)1/2 [K(t- x)- K(t + x)] dt,
7T fo (b-t

(3.2)

(3.3)

(3.6)

(3.7)

(3.8)
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where K(x) is given by (2.22). It follows at once that q(t) must solve the singular integral
equation

o(b2 _t)1/2 [K(t - x) - K(t + x)] dt = (x) (O < x < b) (39)

with subsidiary condition (3.7).
Using (2.21) and appealing to the symmetry of the problem, equations (3.9) and (3.7) can

be re-written in the form

(b 2Q-_t)1 K (t-x)dt=O (-b < x < b), (3.10)

fb Q(t) (3.11)

fb (b2
- t2 )1 2 dt = Co, (3.11)

where

Q(x) = q(x) + 2h TO (x, )(b 2
X2)

1/2 (3.12)
rl- T2

and

4h fob (3.13)
CO =- T (x,) d . (3.13)

4. The stress intensity factor

The mode II stress intensity factor at the crack tip (B, 0) is defined by

ki(B) = - lim [2(B - X)]1/2 E aU2 (X, 0) (4.1)
x-B 2(1- v2 ) X

from which it is not difficult to show that

k1l(B) =p [ L 112 Q(b). (4.2)

It is known [6] that when a crack of length 2B in an infinite thermoelastic solid disturbs a
uniform heat flow of strength (Tj - T2 )K/2H the stress intensity factor is given by

1 1/23/2
k°=- pL" 2b3 2 . (4.3)

Using this infinite solution we obtain the scaled stress intensity factor

kn(B) 2Q(b)

ko b2
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5. Numerical solution of the integral equation

Equations (3.10) and (3.11) are most easily solved by the method of Ioakimidis and
Theocaris [7]. In this method (3.10) and (3.11) are replaced by the linear algebraic system

N

- HkQ(tk)K(t k - x j ) = j=1,2, ... ,N-1,
IT k=1

N

> HkQ(tk) = Co (5.1)
k=1

with weights

Hk r [=1/2, k=1,N
kN-1 l{, k=2,3,...,N-1. (5.2)

Also,

tk = b cos(N) 1 k=1,2,...,N (5.3)

0o.

0o.

ka(B)/ko

0o.

0.

0 7t/2 nt

B/L

Fig. 2. The variation of k,,(B)/k o with BIL and HIL.
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and

xj= b cos - r j=1,2,...,N-1 (54)

are the zeros of the Chebyshev polynomials TN_I(x) and UN 2(x) respectively.
Once the system (5.1) has been solved, the stress intensity factor is determined by (4.4)

and the results of such a computation are recorded in Fig. 2 which illustrates how the stress
intensity varies with BIL and HIL. In the limiting cases as BIL--->O and BIL--> T we
recover the expected results that k(B)lko approaches one and zero respectively. It is
observed that as the strip width is reduced the sliding of the crack surfaces over one another
becomes more pronounced. Results for the problem of an infinite sheet containing an array
of cracks [1] are included for comparison. The solution presented in this paper reduces to
that given in [1] as the specialization HIL-->o is made.
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